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Birational Geometry



I
Rationality

An algebraic variety X is rational over C if C(X ) ∼= C(x1, . . . , xn), where n = dimC X .

Example

Let X ⊂ P2 be a smooth cubic curve.

I Hodge numbers: h1,0(X ) = 1.

I Since h1,0(X ) ̸= 0, X is not rational.

Example (Surfaces (dim 2))

A smooth cubic X ⊂ P3 is rational.
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Intermediate Jacobian and Cubic Threefolds

Let X ⊂ P4 be a smooth cubic threefold.

Intermediate Jacobian (Clemens-Griffiths)
For X with dimC X = 3:

J2(X ) :=
(H2,1)∗

H3(X ,Z)
Key properties:

I Principally polarized abelian variety of dimension 1
2b3(X ) = 5

I Obstruction to rationality: J2(X ) is not isomorphic to Jac(C) for any curve C

Example

1
0 0

1 0 1
0 5 5 0

1 0 1
0 0

1
For a smooth cubic threefold, key Hodge numbers are h1,1(X ) = 1 and h2,1(X ) = 5.
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Clemens-Griffiths Irrationality Criterion

Theorem (Clemens-Griffiths (1972))

A smooth cubic threefold X ⊂ P4 is irrational because its intermediate Jacobian
J2(X ) is the Jacobian of a non-singular curve only if X is birational to P3.

Key Computation

For X ⊂ P4:
H2,1(X ) ∼= C5, H1,2(X ) ∼= C5, H3(X ,Z) ∼= Z10

Thus, J2(X ) is a 5-dimensional abelian variety that is not isogenous to any product
of curve Jacobians.
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I
Known Methods in Birational Geometry

I Hodge-Theoretic Methods

I Intermediate Jacobian (Clemens-Griffiths).
I Brauer group (Artin-Mumford).

I Geometric Methods

I Birational automorphisms (Iskovskikh-Manin).
I Degenerations (Voisin, Kollár, Pirutka).

I Analytic Methods

I Multiplier ideal sheaves (Nadel, Ein-Lazarsfeld).
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Example: Cubic Fourfold (dim 4)

Let X ⊂ P5 be a very general smooth cubic fourfold.

I Hodge diamond:
1
1

1 21 1
1
1

I Is X rational? Katzarkov-Kontsevich-Pantev-Yu: no.
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I
Homological Mirror Symmetry (HMS)

Statement: For a smooth projective variety X , HMS relates:

I B-model: Derived category Db
coh(X ).

I A-model: Fukaya-Seidel category FS(Y ,W ).

Example (Mirror of P2)

Db(P2)←→ FS

(
C2,W = x + y +

1
xy

)
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I
Hodge Structures in HMS

B-model (de Rham cohomology)

for P2 :

1
0 0

0 1 0
0 0

1

for the blow-up of P2 in a point :

1
0 0

0 2 0
0 0

1

for the blow-up of P2 in 6 points :

1
0 0

0 7 0
0 0

1

A-model (LG mirror)

ncHodge structure1 on periodic cyclic homology links A/B-models.

1Non-commutative Hodge structure encoding GW invariants.
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Monodromy Operator and Rationality

Let X → Zt be a family of smooth threefolds.

Monodromy Action

The monodromy operator acts on H2(Zt ,Z):
µ : H2(Zt ,Z)→ H2(Zt ,Z), µ = diag(1, ϵ, ϵ2), ϵ3 = 1.

Example (Cubic Threefold)

For X ⊂ P4, µ is non-nilpotent =⇒ X is irrational (Clemens-Griffiths).

Theorem (Katzarkov-Przyjalkowski)

Let X be a smooth Fano threefold with Pic(X ) ∼= Z and X ̸≃ P3. Then X is rational
if and only if the monodromy operator µ is nilpotent.
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Three-Dimensional Cubic: LG Mirror

The LG mirror of a cubic threefold X ⊂ P4 is the fibration by open K3 surfaces given
by the potential :

W =
(x + y + z)3

xyz
+ z on C3.

This family of K3 surfaces has three singular fibers - two fibers with ordinary double
points and one open-book singularity.

• ••

Let F be the perverse sheaf of vanishing cycles of the potential. Then,
dimH1(F) = 5, dimH2(F) = 4, dimH3(F) = 5.
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Quantum Cohomology and Decomposition

A+B

HdR+Eingevalues of Quantum Multiplication
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I
Splitting the Hodge Structure

Suppose we further split the cohomology of X into generalized eigenspaces for the
operator K of quantum multiplication by c1(X ), or equivalently, split the cohomology
of F according to the critical values of the potential. In that case, we obtain as a
piece a Hodge structure H which is exactly the Clemens-Griffiths invariant:

• x2 • x3• x1

critical values of LG model

= eigenvalues of K: x1, x2, x3

=⇒

Splitting of H∗(X ) = H+ (1) + (1)

1
1

5 5
1
1

H
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I
Theory of Atoms: Key Equation

Quantum differential equation:(
∂

∂u
−

1
u2 K +

1
u

G
)
ψ(u) = 0

I K: Quantum multiplication by c1(X ).

I G: Connection matrix (flat coordinates).
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Birational Invariants via Quantum Decomposition

Theorem (Katzarkov-Kontsevich-Pantev-Yu)
For a projective variety X :

I Decomposition: H∗(X ) splits into Hλi
, labeled by eigenvalues of K.

I Birational invariance: Elementary pieces Hλi
(modulo codimension ≥ 2) are bi-

rational invariants.

Applications

I Singular fibers of LG mirror ↔ eigenvalues of K.

I Integral Hodge structure on Hi (F) is computable via QH(X ).
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Atoms and Euler Fields



I
Hodge Subspace and Euler Field

I Let X be a complex projective variety. Consider the subspace of even Hodge
classes:

HHodge(X ) :=
⊕
i

(
H i,i (X ) ∩ H2i (X ,Q)

)
I This defines a purely even Frobenius manifold FX over Q(y).

I The Euler field Eu ∈ Γ(FX ,TFX
) is:

Eu = c1(TX ) +
∑
i

deg ∆i ̸=2

deg∆i − 2
2

ti∆i

I At a generic p ∈ FX , the spectrum of Eu ⋆ · gives a µ-fold spectral cover.

Definition (Atoms)
AtomsX are the connected components of this spectral cover.

I Key Example: If KX is nef, AtomsX has only one element (quantum product
increases filtration).
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I
Birational Equivalence and Blowups

I Consider the set: ⊔
iso classes of X/C

AtomsX /Aut(X )

I By Iritani’s theorem (arXiv:2307.13555), blowups induce equivalence relations:
FBlZX ∼ FX ×F

×(m−1)
Z (codim Z = m)

I Non-rationality criterion: If X has an atom not appearing in varieties of
dimension ≤ dimX − 2, X is irrational.

To distinguish atoms, we associate invariants with them:

I Rank ρα: The rank of HHodge(X )⊗ Q(y) in the α-eigenspace.

I Hodge polynomial Pα(t) ∈ Z[t, t−1]: The coefficients are given by:
CoefftkPα(t) = dim

⊕
p−q=k

Hp,q(X )α
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I
Some atoms

Known Atoms from Dimensions ≤ 2

I For points and curves, the t2 coefficient of Pα(t) is 0.

I The same holds for most surfaces, with the notable exceptions being K3 surfaces
and surfaces of general type.

I If X is a minimal resolution of an ADE singularity from a K3 or general type surface,
then KX ≥ 0, which implies the rank ρα ≥ 3.
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Example: The Cubic Fourfold (I)

Hodge Numbers and a Special Point

For a very general cubic fourfold X ⊂ CP5, the key non-trivial Hodge numbers are:
h3,1(X ) = h1,3(X ) = 1, h2,2(X ) = 21

We consider a special point γ ∈ FX where the eigenvalues of the operator Euγ⋆γ
are found to be:

{0, 9, 9e2πi/3, 9e4πi/3}

The Eigenspace for Eigenvalue 0
The generalized eigenspace V0 corresponding to the eigenvalue 0 has dimension 24
and contains the transcendental part of the cohomology.

Its Hodge structure and rank are:

I dim(V0 ∩Hp−q=±2) = 1

I dim(V0 ∩Hp−q=0) = 22

I The rank is ρ0 = 2.

The other three eigenspaces are 1-dimensional.
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Example: The Cubic Fourfold (II)

Isolating an Exotic Atom
As we deform from the special point γ to a generic point in the moduli space, the
large eigenspace V0 may split further.

This process isolates at least one Hodge atom, α, with the following crucial
properties derived from the structure of V0:

I Rank: ρα ≤ 2

I Hodge Polynomial: Coefft2 (Pα) = dim(V0 ∩Hp−q=2) = 1

Conclusion: Non-Rationality
An atom with Coefft2 (Pα) = 1 cannot come from any variety of dimension ≤ 2
(e.g., points, curves, or non-K3/general type surfaces).

Since the cubic fourfold (N = 4) possesses an atom that cannot appear in dimensions
≤ N − 2 = 2, we conclude that a very general cubic fourfold is not rational.
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Asymptotics of the Quantum Differential Equation

Quantum differential equation (QDE):(
∂

∂u
−

K
u2 +

G
u

)
ψ = 0

Eigenvalues: Asymptotic solutions ψ(u) ∼ eσ/u correspond to eigenvalues σ of K ⋆ ·.

Theorem (Non-rationality criterion)

Let X be a Fano hypersurface of degree d in PN−1. Define:

δ := dimX − 2 ·
N − d

d
.

If δ > dimX − 2, then X is not rational.

Example (4D Quartic)

X ⊂ P5, d = 4, N = 6:

δ = 4− 2 ·
6− 4

4
= 3 > 2 (dimX − 2 = 2) =⇒ not rational.

Example (5D quartic)

δ = 5− 2
(

7− 4
4

)
= 5− 3

1
2
> 3

Example (3D cubic)
For the three-dimensional generic cubic:

δ = 3− 2
(

5− 3
3

)
=

5
3
> 3− 2 =⇒ not rational.
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Asymptotics and Steenbrink spectrum

Asymptotic of the
Quantum Differ-
ential Equation

Steenbrink
Spectrum

of the LG Model

Central Charges
(CFT)
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2-Dimensional Cubic Xk

Xk a 2-dimensional cubic with Pic(Xk ) ∼= Z2.

P1 #sing = 8− deg = 5

|2KP1 + 5| ̸= 0

On the LG side: H0 + H2 + H4 = Z9, Steenbrink=0.
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I
G-equivariant atoms, with L. Cavenaghi and M. Kontsevich

Setup:

I Let Xgeom ⊂ (P1)4 be a smooth hypersurface of degree (1, 1, 1, 1) over an
algebraically closed field k.

I Key Fact: Xgeom is the blowup of (P1)3 at an elliptic curve E .

Atomic Structure

I 8 simple "point-like" atoms.

I 1 atom αE linked to E .

New Setup:

I Define X over a non-closed field k.
I Assume the Galois group mixes the 4 factors of (P1)4.

Key Calculation
At the "naive" point qi = 1, tj = 0:

Eigenvalues of Eu ⋆ · =

 λ1︸︷︷︸
mult 1

, λ2︸︷︷︸
mult 4

, λ3︸︷︷︸
mult 7


I The third piece has Hodge numbers: 5 (middle), 1 (top/bottom).

I Only 2 algebraic cycles defined over k.
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Thank you!
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