▶ New birational invariants

Ludmil Katzarkov - University of Miami

Birational Geometry

Rationality

An algebraic variety X is rational over $\mathbb C$ if $\mathbb C(X)\cong\mathbb C(x_1,\dots,x_n)$, where $n=\dim_\mathbb C X$.

Example

Let $X \subset \mathbb{P}^2$ be a smooth cubic curve.

- ♣ Hodge numbers: $h^{1,0}(X) = 1$.
- **★** Since $h^{1,0}(X) \neq 0$, X is **not rational**.

Example (Surfaces (dim 2))

A smooth cubic $X \subset \mathbb{P}^3$ is rational.

,

Intermediate Jacobian and Cubic Threefolds

Let $X\subset \mathbb{P}^4$ be a smooth cubic threefold.

Intermediate Jacobian (Clemens-Griffiths)

For X with $\dim_{\mathbb{C}} X = 3$:

$$J^2(X) := \frac{(H^{2,1})^*}{H^3(X,\mathbb{Z})}$$

Key properties:

- Principally polarized abelian variety of dimension $\frac{1}{2}b_3(X) = 5$
- ♣ Obstruction to rationality: $J^2(X)$ is **not** isomorphic to Jac(C) for any curve C

Example

For a smooth cubic threefold, key Hodge numbers are $h^{1,1}(X) = 1$ and $h^{2,1}(X) = 5$.

Clemens-Griffiths Irrationality Criterion

Theorem (Clemens-Griffiths (1972))

A smooth cubic threefold $X \subset \mathbb{P}^4$ is irrational because its intermediate Jacobian $J^2(X)$ is the Jacobian of a non-singular curve **only if** X is birational to \mathbb{P}^3 .

Key Computation

For $X \subset \mathbb{P}^4$:

$$H^{2,1}(X) \cong \mathbb{C}^5$$
, $H^{1,2}(X) \cong \mathbb{C}^5$, $H^3(X,\mathbb{Z}) \cong \mathbb{Z}^{10}$

Thus, $J^2(X)$ is a 5-dimensional abelian variety that is not isogenous to any product of curve Jacobians.

Known Methods in Birational Geometry

- Hodge-Theoretic Methods
 - * Intermediate Jacobian (Clemens-Griffiths).
 - Brauer group (Artin-Mumford).
- Geometric Methods
 - · Birational automorphisms (Iskovskikh-Manin).
 - Degenerations (Voisin, Kollár, Pirutka).
- Analytic Methods
 - Multiplier ideal sheaves (Nadel, Ein-Lazarsfeld).

Example: Cubic Fourfold (dim 4)

Let $X \subset \mathbb{P}^5$ be a very general smooth cubic fourfold.

♣ Hodge diamond:

★ Is X rational? Katzarkov-Kontsevich-Pantev-Yu: **no**.

Homological Mirror Symmetry

Homological Mirror Symmetry (HMS)

 $\textbf{Statement} \colon \mathsf{For} \ \mathsf{a} \ \mathsf{smooth} \ \mathsf{projective} \ \mathsf{variety} \ X, \ \mathsf{HMS} \ \mathsf{relates} \colon$

- * **B-model**: Derived category $D^b_{coh}(X)$.
- **A-model**: Fukaya-Seidel category FS(Y, W).

Example (Mirror of \mathbb{P}^2)

$$D^b(\mathbb{P}^2) \longleftrightarrow FS\left(\mathbb{C}^2, W = x + y + \frac{1}{xy}\right)$$

Hodge Structures in HMS

B-model (de Rham cohomology)

for the blow-up of \mathbb{P}^2 in 6 points : 0

 $ncHodge\ structure^{1}$ on periodic cyclic homology links A/B-models.

¹Non-commutative Hodge structure encoding GW invariants.

Monodromy Operator and Rationality

Let $X \to Z_t$ be a family of smooth threefolds.

Monodromy Action

The monodromy operator acts on $H^2(Z_t, \mathbb{Z})$:

$$\mu: H^2(Z_t, \mathbb{Z}) \to H^2(Z_t, \mathbb{Z}), \quad \mu = \operatorname{diag}(1, \epsilon, \epsilon^2), \ \epsilon^3 = 1.$$

Example (Cubic Threefold)

For $X \subset \mathbb{P}^4$, μ is non-nilpotent $\implies X$ is irrational (Clemens-Griffiths).

Theorem (Katzarkov-Przyjalkowski)

Let X be a smooth Fano threefold with $\operatorname{Pic}(X) \cong \mathbb{Z}$ and $X \not\simeq \mathbb{P}^3$. Then X is rational if and only if the monodromy operator μ is nilpotent.

Three-Dimensional Cubic: LG Mirror

The LG mirror of a cubic threefold $X\subset \mathbb{P}^4$ is the fibration by open K3 surfaces given by the potential :

$$W = \frac{(x+y+z)^3}{xyz} + z \quad \text{on } \mathbb{C}^3.$$

This family of K3 surfaces has three singular fibers - two fibers with ordinary double points and one open-book singularity.

Let $\mathcal F$ be the perverse sheaf of vanishing cycles of the potential. Then, $\mathrm{dim}\mathbb H^1(\mathcal F)=5,\quad \mathrm{dim}\mathbb H^2(\mathcal F)=4,\quad \mathrm{dim}\mathbb H^3(\mathcal F)=5.$

Quantum Cohomology and Decomposition

A+B

 $H_{\mathrm{dR}} + \text{Eingevalues}$ of Quantum Multiplication

Splitting the Hodge Structure

Suppose we further split the cohomology of X into generalized eigenspaces for the operator K of quantum multiplication by $c_1(X)$, or equivalently, split the cohomology of $\mathcal F$ according to the critical values of the potential. In that case, we obtain as a piece a Hodge structure $\mathcal H$ which is exactly the Clemens-Griffiths invariant:

critical values of LG model

= eigenvalues of K: x_1 , x_2 , x_3

Splitting of
$$H^*(X) = \mathcal{H} + (1) + (1)$$

Theory of Atoms: Key Equation

Quantum differential equation:

$$\left(\frac{\partial}{\partial u} - \frac{1}{u^2} \mathsf{K} + \frac{1}{u} \mathsf{G}\right) \psi(u) = 0$$

- * K: Quantum multiplication by $c_1(X)$.
- * G: Connection matrix (flat coordinates).

Birational Invariants via Quantum Decomposition

Theorem (Katzarkov-Kontsevich-Pantev-Yu)

For a projective variety X:

- **Decomposition**: $H^*(X)$ splits into H_{λ_i} , labeled by eigenvalues of K.
- * Birational invariance: Elementary pieces H_{λ_i} (modulo codimension \geq 2) are birational invariants.

Applications

- * Singular fibers of LG mirror ↔ eigenvalues of K.
- **★** Integral Hodge structure on $\mathbb{H}^i(\mathcal{F})$ is computable via $\mathrm{QH}(X)$.

Atoms and Euler Fields

Hodge Subspace and Euler Field

Let X be a complex projective variety. Consider the subspace of even Hodge classes:

$$H_{\mathsf{Hodge}}(X) := \bigoplus_{i} \left(H^{i,i}(X) \cap H^{2i}(X,\mathbb{Q}) \right)$$

- * This defines a purely even Frobenius manifold \mathcal{F}_X over $\overline{\mathbb{Q}}(y)$.
- **★** The Euler field Eu ∈ Γ(\mathcal{F}_X , $\mathcal{T}_{\mathcal{F}_X}$) is:

$$Eu = c_1(T_X) + \sum_{\substack{i \ \deg \Delta_i \neq 2}} \frac{\deg \Delta_i - 2}{2} t_i \Delta_i$$

★ At a generic $p \in \mathcal{F}_X$, the spectrum of $Eu \star \cdot$ gives a μ -fold spectral cover.

Definition (Atoms)

Atoms $_X$ are the connected components of this spectral cover.

* Key Example: If K_X is nef, Atoms_X has only one element (quantum product increases filtration).

Birational Equivalence and Blowups

Consider the set:

$$\bigsqcup_{\mathsf{iso}\ \mathsf{classes}\ \mathsf{of}\ X/\mathbb{C}} \mathsf{Atoms}_X/\mathsf{Aut}(X)$$

- * By Iritani's theorem (arXiv:2307.13555), blowups induce equivalence relations: $\mathcal{F}_{\mathrm{Bl}_{7}X} \sim \mathcal{F}_{X} \times \mathcal{F}_{7}^{\times (m-1)}$ (codim Z=m)
- * Non-rationality criterion: If X has an atom not appearing in varieties of dimension $\leq \dim X 2$, X is irrational.

To distinguish atoms, we associate invariants with them:

- * Rank ρ_{α} : The rank of $H_{\mathsf{Hodge}}(X) \otimes \overline{\mathbb{Q}}(\mathbf{y})$ in the α -eigenspace.
- * Hodge polynomial $P_{\alpha}(t) \in \mathbb{Z}[t, t^{-1}]$: The coefficients are given by: $\operatorname{Coeff}_{t^k} P_{\alpha}(t) = \dim \bigoplus_{i \in \mathbb{N}} \operatorname{H}^{p,q}(X)_{\alpha}$

$$\operatorname{H}_{t^k} P_{\alpha}(t) = \dim \bigoplus_{p-q=k} \operatorname{H}^{p,q}($$

Some atoms

Known Atoms from Dimensions ≤ 2

- * For **points and curves**, the t^2 coefficient of $P_{\alpha}(t)$ is 0.
- The same holds for most surfaces, with the notable exceptions being K3 surfaces and surfaces of general type.
- * If X is a minimal resolution of an ADE singularity from a K3 or general type surface, then $K_X \ge 0$, which implies the rank $\rho_{\alpha} \ge 3$.

Example: The Cubic Fourfold (I)

Hodge Numbers and a Special Point

For a very general cubic fourfold $X\subset\mathbb{CP}^5$, the key non-trivial Hodge numbers are:

$$h^{3,1}(X) = h^{1,3}(X) = 1, \quad h^{2,2}(X) = 21$$

We consider a special point $\gamma \in \mathcal{F}_X$ where the eigenvalues of the operator $\mathrm{Eu}_\gamma \star_\gamma$ are found to be:

$$\{0, 9, 9e^{2\pi i/3}, 9e^{4\pi i/3}\}$$

The Eigenspace for Eigenvalue 0

The generalized eigenspace V_0 corresponding to the eigenvalue 0 has dimension 24 and contains the transcendental part of the cohomology.

Its Hodge structure and rank are:

- $\stackrel{\bullet}{\bullet} \operatorname{dim}(V_0 \cap H^{p-q=\pm 2}) = 1$
- $\stackrel{\bullet}{\bullet} \operatorname{dim}(V_0 \cap H^{p-q=0}) = 22$
- ▶ The rank is $\rho_0 = 2$.

The other three eigenspaces are 1-dimensional.

Example: The Cubic Fourfold (II)

Isolating an Exotic Atom

As we deform from the special point γ to a generic point in the moduli space, the large eigenspace V_0 may split further.

This process isolates at least one Hodge atom, α , with the following crucial properties derived from the structure of V_0 :

- Rank: $\rho_{\alpha} \leq 2$
- *** Hodge Polynomial:** $\operatorname{Coeff}_{t^2}(P_\alpha) = \dim(V_0 \cap H^{p-q=2}) = 1$

Conclusion: Non-Rationality

An atom with $\mathrm{Coeff}_{t^2}(P_\alpha)=1$ cannot come from any variety of dimension ≤ 2 (e.g., points, curves, or non-K3/general type surfaces).

Since the cubic fourfold (N=4) possesses an atom that cannot appear in dimensions $\leq N-2=2$, we conclude that a very general cubic fourfold is not rational.

Asymptotics of the Quantum Differential Equation

Quantum differential equation (QDE):

$$\left(\frac{\partial}{\partial u} - \frac{\mathsf{K}}{u^2} + \frac{\mathsf{G}}{u}\right)\psi = 0$$

Eigenvalues: Asymptotic solutions $\psi(u) \sim e^{\sigma/u}$ correspond to eigenvalues σ of K \star ·

Theorem (Non-rationality criterion)

Let X be a Fano hypersurface of degree d in \mathbb{P}^{N-1} . Define:

$$\delta := \dim X - 2 \cdot \frac{N - d}{d}$$
.

If $\delta > \dim X - 2$, then X is not rational.

Example (4D Quartic)

$$X\subset\mathbb{P}^5,\ d=4,\ N=6$$
:
$$\delta=4-2\cdot\frac{6-4}{4}=3>2\quad (\dim X-2=2)\implies \text{not rational}.$$

Example (5D quartic)

$$\delta = 5 - 2\left(\frac{7 - 4}{4}\right) = 5 - 3\frac{1}{2} > 3$$

Example (3D cubic)

For the three-dimensional generic cubic:

$$\delta = 3 - 2\left(\frac{5-3}{3}\right) = \frac{5}{3} > 3 - 2 \implies$$
 not rational.

Asymptotics and Steenbrink spectrum

2-Dimensional Cubic X_k

 X_k a 2-dimensional cubic with $\operatorname{Pic}(X_k) \cong \mathbb{Z}_2$.

$$|2K_{\mathbb{P}^1} + 5| \neq 0$$

On the LG side: $H^0 + H^2 + H^4 = \mathbb{Z}^9$, Steenbrink=0.

G-equivariant atoms, with L. Cavenaghi and M. Kontsevich

Setup:

- * Let $X_{\text{geom}} \subset (\mathbb{P}^1)^4$ be a smooth hypersurface of degree (1,1,1,1) over an algebraically closed field k.
- **Key Fact**: X_{geom} is the blowup of $(\mathbb{P}^1)^3$ at an elliptic curve E.

Atomic Structure

- * 8 simple "point-like" atoms.
- * 1 atom α_E linked to E.

New Setup:

- ▶ Define X over a non-closed field k.
- * Assume the Galois group mixes the 4 factors of $(\mathbb{P}^1)^4$.

Key Calculation

At the "naive" point $q_i = 1, t_j = 0$:

Eigenvalues of
$$Eu \star \cdot = \left\{ \underbrace{\lambda_1}_{\text{mult 1}}, \underbrace{\lambda_2}_{\text{mult 4}}, \underbrace{\lambda_3}_{\text{mult 7}} \right\}$$

- * The third piece has Hodge numbers: 5 (middle), 1 (top/bottom).
- ◆ Only 2 algebraic cycles defined over k.

